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Research Overview and Roadmap

Today:
(1) information-theoretic complexity in optimization

(2)∞-dim optimization in general metric space! sampling and diffusion!
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Optimization



Optimization and Data Science

Optimization comes in many different flavors:

• online

• distributed
• non-convex
• min-max
• combinatorial
• robust
• stochastic
• non-Euclidean
• ...

Decision making under uncertainty
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Optimization and Data Science

Optimization comes in many different flavors:

• online
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• non-convex
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Federated Learning
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Optimization and Data Science

Optimization comes in many different flavors:

• online
• distributed
• non-convex

• min-max
• combinatorial
• robust
• stochastic
• non-Euclidean
• ...

Neural Network Training
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Optimization and Data Science

Optimization comes in many different flavors:

• online
• distributed
• non-convex
• min-max

• combinatorial
• robust
• stochastic
• non-Euclidean
• ...

Game Dynamics and Equilibrium

min
x

max
y

f(x, y) = axy+x2−y2, a = interaction
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Optimization and Data Science

Optimization comes in many different flavors:

• online
• distributed
• non-convex
• min-max
• combinatorial
• robust
• stochastic
• non-Euclidean
• ...

and is integral to machine learning success stories
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Outline

Study # rounds of interaction (k) with an oracleO, such that for functions f in certain
convex function class F ,

f(xk)− f∗ ≤ ϵ

for the output xk.

Goal:

Two stops:
• Function with smooth higher-order derivatives (F) and higher-order oracle (O)

[BJLLS COLT ’19]
• Non-smooth function (F) with parallel gradient oracle (O) [BJLLS NeurIPS ’19]
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Black-box Oracle Complexity: Smooth Function

Setting
• Function class F : Lipschitz gradient, i.e., ∥∇f(x)−∇f(y)∥ ≤ L∥x− y∥
• Gradient Oracle O: access to {f(·),∇f(·)} at any query point x
• Ex: linear system f(x) = ∥Ax− b∥22

Figure 1: Classical First-Order Oracle Model

Curved arrow is where algorithm design comes in (Ex: x1 ← x0 − h ·∇f(x0))
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Gradient Descent and Accelerated Gradient Descent

Gradient Descent
xk+1 = xk − 1

L∇f(xk)
one gradient call per iteration

Rate O(1/k), dimension-free

ODE: Ẋt = −∇f(Xt)

Accelerated Gradient Descent
xk+1 = yk − 1

L∇f(yk)
yk = xk + k−1

k+2 (xk − xk−1)

Rate O(1/k2), not a descent method

ODE: Ẍt + 3/t · Ẋt +∇f(Xt) = 0

Formalism of oracle model led to the discovery of AGD and it is the best one can do.
[Nemirovski & Yudin ’83] 5



Generalization: Higher Order Oracle Model

Setting
• Function class F : p-times differentiable & p-th order smooth

∥∇pf(x)−∇pf(y)∥ := max
∥v∥=1

∣∣∇pf(x)[v]p −∇pf(y)[v]p
∣∣ ≤ Lp∥x− y∥

• p-th Order Oracle O: access to {f(x),∇f(x), · · · ,∇pf(x)}
• Example: ℓp-regression 1

p∥Ax− b∥
p
p

Figure 2: Higher order oracle
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Generalization: Higher Order Oracle Model

Setting
• Function class F : p-times differentiable & p-th order smooth
• p-th Order Oracle O: access to {f(x),∇f(x), · · · ,∇pf(x)}
• Example: ℓp-regression 1

p∥Ax− b∥
p
p

Prior Art [Agarwal & Hazan ’18, Nesterov ’18]
Under mild assumption on the algorithm, one has

min
0≤t≤k

f(xt)− f∗ ≥ Ω

( Lp
k 3p+1

2

)
.

There is a family of algorithm that achieve convergence rate O( 1
kp+1 ).
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p∥Ax− b∥
p
p

Prior Art [Agarwal & Hazan ’18, Nesterov ’18]
Under mild assumption on the algorithm, one has

min
0≤t≤k

f(xt)− f∗ ≥ Ω

( Lp
k 3p+1

2

)
.

There is a family of algorithm that achieve convergence rate O( 1
kp+1 ).

Coincide when p = 1.

For p = 2 : Accelerated Cubic-Regularized Newton [Nesterov & Polyak ’08].
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Generalization: Higher Order Oracle Model

Setting
• Function class F : p-times differentiable & p-th order smooth
• p-th Order Oracle O: access to {f(x),∇f(x), · · · ,∇pf(x)}
• Example: ℓp-regression 1

p∥Ax− b∥
p
p

Prior Art [Agarwal & Hazan ’18, Nesterov ’18]
Under mild assumption on the algorithm, one has

min
0≤t≤k

f(xt)− f∗ ≥ Ω

( Lp
k 3p+1

2

)
.

There is a family of algorithm that achieve convergence rate O( 1
kp+1 ).

Coincide when p = 1.

For p = 2 : Accelerated Cubic-Regularized Newton [Nesterov & Polyak ’08].

Gap between upper & lower bound? Better algorithm?
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The Iteration-Complexity Optimal Algorithm

Convergence Guarantee [BJLLS, COLT’19]

There is an algorithm with error decrease as Õ(k− 3p+1
2 ).

Still leverage interpolation of past iterates, but each iteration of the algorithm requires
solving a tensor minimization problem:

yk+1 = argmin
y

{
fp(y; xk) +

Lp
p!∥y− xk∥

p+1
}

When p = 1, 2, 3 efficiently solvable.
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The Iteration-Complexity Optimal Algorithm

Convergence Guarantee [BJLLS, COLT’19]

There is an algorithm with error decrease as Õ(k− 3p+1
2 ).

Still leverage interpolation of past iterates, but each iteration of the algorithm requires
solving a tensor minimization problem:

yk+1 = argmin
y

{
fp(y; xk) +

Lp
p!∥y− xk∥

p+1
}

When p = 1, 2, 3 efficiently solvable.

These are quite powerful oracles ...

Broadly useful beyond scientific curiosity?
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Black-box Oracle Complexity: Non-Smooth Function

Setting
• Function class F : Lipschitz, i.e., |f(x)− f(y)| ≤ L0 · ∥x− y∥
• First Order Oracle O: return {f(x), ∂f(x)}
• Example: ℓ1-penalty ∥ · ∥1, hinge loss

Figure 2: Classical Sequential Setup (non-smooth f)
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Black-box Oracle Complexity: Non-Smooth Function

(Sub)gradient Descent
At iteration k,
xk+1 ← xk − h ·∇f(xk)
Output: x̄K = 1

K
∑
xk, rate O(1/

√
K)

O
( 1
ϵ2

)
queries suffice

Cutting Plane Methods
High-dimensional binary search
! separation oracle implementable
by ∇f thanks to convexity

O
(
d log

(1
ϵ

))
queries suffice
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Black-box Oracle Complexity: Non-Smooth Function

Sequential Setup (K = 1):

Figure 2: Upper & Lower Bound for non-smooth f

8



Generalization: Parallel Oracle

Allowed to submit K gradient queries in parallel [Nemirovski ’94].

Figure 3: Schematic for Parallel Setup

Call Depth the # queries to parallel oracle O
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Generalization: Parallel Oracle

Allowed to submit K gradient queries in parallel [Nemirovski ’94].

Figure 3: Schematic for Parallel Setup

Call Depth the # queries to parallel oracle O

For K = poly(d), best possible depth?

Power of non-adaptive information in convex optimization?
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Our Result

Upper & Lower Bound on Parallel Complexity [BJLLS, NeurIPS ’19]
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Our Result

Upper & Lower Bound on Parallel Complexity [BJLLS, NeurIPS ’19]

Randomized smoothing of non-smooth f as g = f ∗ γr, parallel computation of
gradient by sampling xi ∼ N (y, r · I) and ∇̂g(y) = 1

m
∑m

i=1∇f(xi)! leverage highly smooth
acceleration result on the smoothed g(·)
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Our Result

Upper & Lower Bound on Parallel Complexity [BJLLS, NeurIPS ’19]

Reality check: binary classification bi ∈ {±1}, ai ∈ R300, ϵ ∼ 10−2, SVM loss with 5000
samples minx f(x) =

∑5000
i=1 [1− bi · a⊤i x]+

• (Sub)gradient descent: ∼ 650 iterations
• Parallel Stochastic method: ∼ 250 iterations
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Statistical Computation and
Sampling



Sampling as an important algorithmic primitive

(a) Bayesian statistics / inverse problem (b) Volume computation / counting

(c) Computational physics and chemistry (d) Diffusion Generative Modeling
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Outline

Draw samples from

π ∝ e−f target density known up to normalizing constant

Design a process to gradually transform simple ν → complicated π.

Goal:

Two stops
• Optimization in P2(Rd) [J NeurIPS ’21]: Mirror Langevin as geometry-aware MCMC
sampling algorithm

• Borrow ideas from generative modeling [JN ’24]: optimal stochastic control / optimal
transport to steer a trajectory from ν to π using machine learning
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Optimization in P2(Rd) and JKO Scheme

Deterministic Optimization in the space of probability measures

(Rd, ∥ · ∥2)→ (P2(Rd),W2)

Conceptually,
ρk+1 = argmin

ρ

∫
ρ(x) log ρ(x)

π(x) dx︸ ︷︷ ︸
KL objective

+
1
2h ×W2

2 (ρ, ρk)︸ ︷︷ ︸
geometry“Prox step”

take h small, iterates (ρk)k trace out a curve of measures (ρt)t in P2(Rd) converging to π.
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Deterministic Optimization in the space of probability measures

(Rd, ∥ · ∥2)→ (P2(Rd),W2)

Conceptually,
ρk+1 = argmin

ρ

∫
ρ(x) log ρ(x)

π(x) dx︸ ︷︷ ︸
KL objective

+
1
2h ×W2

2 (ρ, ρk)︸ ︷︷ ︸
geometry“Prox step”

take h small, iterates (ρk)k trace out a curve of measures (ρt)t in P2(Rd) converging to π.

[JKO ’98] Coincide with stochastic SDE dynamics ρt = Law(Xt):

dXt = −∇f(Xt)dt+
√
2dWt

Have π ∝ e−f as long-time equilibrium and easy to discretize:

xk+1 = xk − h ·∇f(xk) +
√
2h · zk+1

Langevin MCMC

Converges to πh ̸= π but πh → π as h→ 0. 13



Optimization in P2(Rd) and JKO Scheme

[JKO ’98] Density Xt ∼ ρt along Langevin SDE dynamics

dXt = −∇f(Xt)dt+
√
2dWt

follows gradient flow of minimizing KL functional withW2 metric in P2(Rd)

“ρ̇t = −∇W2KL(ρt∥π)”
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Optimization in P2(Rd) and JKO Scheme

[JKO ’98] Density Xt ∼ ρt along Langevin SDE dynamics

dXt = −∇f(Xt)dt+
√
2dWt

follows gradient flow of minimizing KL functional withW2 metric in P2(Rd)

“ρ̇t = −∇W2KL(ρt∥π)”

We know one can go from
(Rd, ∥ · ∥2)→ (X ,g)

via mirror descent in optimization.

Is there a mirror flow analogue of Langevin?

(P2(Rd),W2)→ (P2(X ), W2,g)

Convergence and stable discretization?
replace ground cost:
∥ · ∥2 → geodesic distance under g
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Mirror Flow and Mirror Descent

Mirror flow (in dual space) for bijective mapping ∇φ : X → Rd, ∇2φ ≻ 0:

dYt = −∇f(Xt)dt, Yt = ∇φ(Xt) (1)

Same as (in primal space) Riemannian gradient flow over (X ,∇2φ):

dXt = − (∇2φ(Xt))−1∇f(Xt) dt (2)

Precondition for local geometry through choice of mirror map φ

grad f under metric ∇2φ

14
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Mirror flow (in dual space) for bijective mapping ∇φ : X → Rd, ∇2φ ≻ 0:

dYt = −∇f(Xt)dt, Yt = ∇φ(Xt) (1)

Same as (in primal space) Riemannian gradient flow over (X ,∇2φ):

dXt = − (∇2φ(Xt))−1∇f(Xt) dt (2)

Precondition for local geometry through choice of mirror map φ

grad f under metric ∇2φ

Mirror descent discretizes (1):

xk+1 = ∇φ∗(∇φ(xk)− h ·∇f(xk)) (3)

Can invert ∇φ∗ numerically, i.e., convex optimization.

Ex: φ(x) = 1
2∥x∥22 GD; φ(x) =

∑
i xi log(xi) multiplicative weight. If φ = f Newton.

E.g., minx∈Rd f(x) : (3) allow regularity w.r.t norms beyond ∥ · ∥2 without ∇2
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Mirror Descent: Application to Constrained Setup

Optimize minx∈X f(x): turn into Riemannian manifold by endowing X with metric ∇2φ

where ∥∇φ(x)∥ → ∞ as x→ ∂X .

Figure 5: Log-barrier metric supported on a polytope
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Primal X ∈ X constrained

Ẋt = −(∇2φ(Xt))−1∇f(Xt)← Riemannian GF

xk+1 = xk − h (∇2φ(xk))−1∇f(xk)︸ ︷︷ ︸
→0

as xk → ∂X

[-] Can go out if h ̸= 0, need ∇2φ(·) 15



Mirror Descent: Application to Constrained Setup

Optimize minx∈X f(x): turn into Riemannian manifold by endowing X with metric ∇2φ

where ∥∇φ(x)∥ → ∞ as x→ ∂X .

Figure 5: Log-barrier metric supported on a polytope

Primal X ∈ X constrained

Ẋt = −(∇2φ(Xt))−1∇f(Xt)
xk+1 = xk − h (∇2φ(xk))−1∇f(xk)︸ ︷︷ ︸

→0

as xk → ∂X

[-] Can go out if h ̸= 0, need ∇2φ(·)

Dual Y ∈ Rd un-constrained

Ẏt = −∇f(Xt)← Mirror Flow

yk+1 = yk − h∇f(xk), xk+1 = ∇φ∗(yk+1)

[+] Never leave X
[+] No need to evaluate ∇2φ(·)

Yt = ∇φ(Xt)

∇φ : X → Rd
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Mirror Langevin: Continuous Time

Sample π ∝ e−f supported on X ⊆ Rd.

Going from (Rd, ∥ · ∥2)→ (X ,g) to (P2(Rd),W2)→ (P2(X ),W2,g)

Mirror Langevin SDE in dual space:

dYt = −∇f(∇φ∗(Yt))dt+
√
2[∇2φ∗(Yt)]−1 dWt, Yt = ∇φ(Xt)

Equivalent to Riemannian Langevin dynamics in primal space:

dXt = (∇ · (∇2φ(Xt)−1)−∇2φ(Xt)−1∇f(Xt))dt+
√
2∇2φ(Xt)−1 dWt
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Mirror Langevin: Continuous Time

Sample π ∝ e−f supported on X ⊆ Rd.

Going from (Rd, ∥ · ∥2)→ (X ,g) to (P2(Rd),W2)→ (P2(X ),W2,g)

Mirror Langevin SDE in dual space:

dYt = −∇f(∇φ∗(Yt))dt+
√
2[∇2φ∗(Yt)]−1 dWt, Yt = ∇φ(Xt)

Equivalent to Riemannian Langevin dynamics in primal space:

dXt = (∇ · (∇2φ(Xt)−1)−∇2φ(Xt)−1∇f(Xt))dt+
√
2∇2φ(Xt)−1 dWt

Recall ∇2φ(X)−1 → 0 as X→ ∂X so Xt ∈ X always.

GF interpretation of DKL under W2,∇2φ ! “Wasserstein mirror flow” [Chewi et al ’20]
same objective more general metric
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Mirror Langevin: Continuous Time

Sample π ∝ e−f supported on X ⊆ Rd.

Going from (Rd, ∥ · ∥2)→ (X ,g) to (P2(Rd),W2)→ (P2(X ),W2,g)

Mirror Langevin SDE in dual space:

dYt = −∇f(∇φ∗(Yt))dt+
√
2[∇2φ∗(Yt)]−1 dWt, Yt = ∇φ(Xt)

Equivalent to Riemannian Langevin dynamics in primal space:

dXt = (∇ · (∇2φ(Xt)−1)−∇2φ(Xt)−1∇f(Xt))dt+
√
2∇2φ(Xt)−1 dWt

Mapping the diffusion process to dual space: a tractable SDE-dynamics that
(1) enjoy better geometric property for mixing;

(2) perform constrained sampling on compact, convex set X
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Mirror Langevin: Discretization

SDE in dual space:

dYt = −∇f(Xt)dt+
√
2[∇2φ(Xt)]dWt, Yt = ∇φ(Xt)

Euler-Maruyama [Zhang, Peyré et al. ’20]

xk+1 = ∇φ∗
(
∇φ(xk)− h ·∇f(xk) +

√
2h · [∇2φ(xk)]1/2 · zk+1

)

Asymptotic irreducible bias w.r.t diminishing step size h→ 0 generally.
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Bias-free Discretization Schemes [J NeurIPS ’21]

dYt = −∇f(Xt)dt +
√
2[∇2φ∗(Yt)]−1 dWt , Yt = ∇φ(Xt)

deterministic, need to query ∇f stochastic, only involve φ

Splitting Schemes (discretize objective but not geometry)

Forward Discretization:
⎧
⎪⎪⎨

⎪⎪⎩

ȳ = ∇φ(xk)− h ·∇f(xk)
solve dyt =

√
2[∇2φ∗(yt)]−1dWt from initial y0 = ȳ (♣)

xk+1 = ∇φ∗(yh)

Brownian motion (♣) can be solved approximately. Guarantee xk ∈ X ∀k.
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Bias-free Discretization Schemes [J NeurIPS ’21]

dYt = −∇f(Xt)dt +
√
2[∇2φ∗(Yt)]−1 dWt , Yt = ∇φ(Xt)

deterministic, need to query ∇f stochastic, only involve φ

Splitting Schemes (discretize objective but not geometry)

Forward Discretization:
⎧
⎪⎪⎨

⎪⎪⎩

ȳ = ∇φ(xk)− h ·∇f(xk)
solve dyt =

√
2[∇2φ∗(yt)]−1dWt from initial y0 = ȳ (♣)

xk+1 = ∇φ∗(yh)

Can also consider backward discretization: ∇f(xk)→ ∇f(xk+1).

Both bias-free as h→ 0.
18



Numerical Experiments

1. Ill-conditioned Gaussian (d = 50, κ = 100)

Figure 6: Error averaged over 100 parallel chains (mixing time d
ϵ2 vs.

κd
ϵ2 unadjusted Langevin)

2. Uniform sampling from 2D constrained ill-conditioned box [−0.01, 0.01]× [−1, 1]
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Diffusion Generative Modeling and Time Reversal SDE

MCMC struggles with multi-modality in the target distribution. Alternatives?

Figure 7: Probability distribution corresponding to image of scientists
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Diffusion Generative Modeling and Time Reversal SDE

Setup
Given many samples from a complex distribution π, generate more samples from it.

20



Diffusion Generative Modeling and Time Reversal SDE

With two path measures represented as (π is target, ν simple)

dXt = σut(Xt)dt+ σ
−−→
dWt, X0 ∼ ν ⇒ (Xt)t ∼

−→P ν,σu

Xt+h ≈ Xt + hσut(Xt) +
√
hσzt, X0 ∼ ν

dXt = σvt(Xt)dt+ σ
←−−
dWt, XT ∼ π ⇒ (Xt)t ∼

←−P π,σv

Xt−h ≈ Xt + hσvt(Xt) +
√
hσzt, XT ∼ π

Interested in learning drifts u, v such that DKL(
−→P ν,σu∥

←−P π,σv) = 0 or DKL(
←−P π,σv∥

−→P ν,σu) = 0:

simple ν(x)
Pν,σu

−−−−−−−−→←−−−−−−−−
Pπ,σv

π(x) target

20



Diffusion Generative Modeling and Time Reversal SDE

With two path measures represented as (π is target, ν simple)

dXt = σut(Xt)dt+ σ
−−→
dWt, X0 ∼ ν ⇒ (Xt)t ∼

−→P ν,σu

dXt = σvt(Xt)dt+ σ
←−−
dWt, XT ∼ π ⇒ (Xt)t ∼

←−P π,σv

Interested in learning drifts u, v such that DKL(
−→P ν,σu∥

←−P π,σv) = 0 or DKL(
←−P π,σv∥

−→P ν,σu) = 0:

simple ν(x)
Pν,σu

−−−−−−−−→←−−−−−−−−
Pπ,σv

π(x) target

Generative models: fix noising part←−P π,σv (e.g., OU), learn NN-parameterized denoiser u
using data from π ! minu DKL(

←−P π,σv∥
−→P ν,σu) [Song et al ’21]

Figure 7: Generative Model: learning to denoise 20



Sampling by learning transition path

simple ν(x)
Pν,σu

−−−−−−−−→←−−−−−−−−
Pπ,σv

π(x) target

Don’t have samples from π: reverse KL, still fix v
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Sampling by learning transition path

simple ν(x)
Pν,σu

−−−−−−−−→←−−−−−−−−
Pπ,σv

π(x) target

Don’t have samples from π: reverse KL, still fix v

DKL(
−→P ν,σu∥

←−P π,σv) = E−→P ν,σu

[
log

(
d−→P ν,σu

d←−P π,σv

)]
= EX∼−→P ν,σu

[∫ T

0
... (Xt)dt

]
=: LKL(u)

! solution minu LKL(u) is unique, resulting u∗ can be used to transport ν to π [VGD ’23]
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Sampling by learning transition path

simple ν(x)
Pν,σu

−−−−−−−−→←−−−−−−−−
Pπ,σv

π(x) target

Don’t have samples from π: reverse KL, still fix v

DKL(
−→P ν,σu∥

←−P π,σv) = E−→P ν,σu

[
log

(
d−→P ν,σu

d←−P π,σv

)]
= EX∼−→P ν,σu

[∫ T

0
... (Xt)dt

]
=: LKL(u)

! solution minu LKL(u) is unique, resulting u∗ can be used to transport ν to π [VGD ’23]

Figure 8: Interpolating Flow between ν and π

But −→P ν,σu
T = π only if T→∞.
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Pathspace perspective: Schrödinger Bridge

Such forward/backward process is not unique, a better choice of −→P ν,σu∗ corresponds to

min
u

Eu

[∫ T

0

1
2∥ut(Xt)∥

2dt
]

s.t. dXt = σut(Xt)dt+ σ dWt, X0 ∼ ν, XT ∼ π

! minimum control effort steering ν to π. Dynamics reaches target in finite time.

stochastic optimal control

Figure 9: (Constrained) Optimization over path measure PC([0, T],R)
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Pathspace perspective: Schrödinger Bridge

Such forward/backward process is not unique, a better choice of −→P ν,σu∗ corresponds to

min
u

Eu

[∫ T

0

1
2∥ut(Xt)∥

2dt
]

s.t. dXt = σut(Xt)dt+ σ dWt, X0 ∼ ν, XT ∼ π

! minimum control effort steering ν to π. Dynamics reaches target in finite time.

stochastic optimal control

Figure 9: (Constrained) Optimization over path measure PC([0, T],R)

Losses that can be used to train for a control u that follows an optimal trajectory w/o
access to data from π? 22



Sampling as optimal control / transport of measure over path-space

Add regularizer to DKL ! This imposes terminal marginals, uniqueness, and fulfills a
reversible noising/denoising in an optimal way:

arg min
∇u,∇v

DKL(
−→P ν,σ∇u∥

←−P π,σ∇v)+Reg(∇u) or Reg(∇v)

Regularizer on the forward/backward control ∇u,∇v can be done in various ways using
different perspectives on the SB problem: PDE, FBSDE, Optimal Transport [JN ’24].

Feynman-KacPINN Schrödinger system
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Sampling as optimal control / transport of measure over path-space

Add regularizer to DKL ! This imposes terminal marginals, uniqueness, and fulfills a
reversible noising/denoising in an optimal way:

arg min
∇u,∇v

DKL(
−→P ν,σ∇u∥

←−P π,σ∇v)+Reg(∇u) or Reg(∇v)

Regularizer on the forward/backward control ∇u,∇v can be done in various ways using
different perspectives on the SB problem: PDE, FBSDE, Optimal Transport [JN ’24].

Feynman-KacPINN Schrödinger system
Algorithm

Alternate between:
(1) simulate trajectory −→P ν,σ∇u with current control ∇u from ν ;
(2) estimate loss L(∇u,∇v) above & update NN-parameterized controls ∇u,∇v
! if loss = 0, the controls found must be optimal

23



Experiment: Gaussian Mixture Model

(a) No optimality enforced (Reg=0) [CLT ’22] (b) PDE-based Loss [VN ’23]

(c) SDE-based Loss (ours) (d) OT-based Loss (ours)

This approach: reduce sampling to ERM with neural network.

24



Conclusion

I am particularly excited about:

• Theoretically, the connection between optimization, sampling, physics-inspired
dynamical system (e.g., HMC, momentum), mean-field game goes much deeper

interacting particle system
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Conclusion

I am particularly excited about:

• Theoretically, the connection between optimization, sampling, physics-inspired
dynamical system (e.g., HMC, momentum), mean-field game goes much deeper

• Computationally, bring powerful function fitting NN-architecture to solve more
traditional tasks in sampling, control, PDE etc., is changing many areas of science

operator learning & harmonic analysis
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Conclusion

I am particularly excited about:

• Theoretically, the connection between optimization, sampling, physics-inspired
dynamical system (e.g., HMC, momentum), mean-field game goes much deeper

• Computationally, bring powerful function fitting NN-architecture to solve more
traditional tasks in sampling, control, PDE etc., is changing many areas of science

• Applications in climate modeling (PDE), drug discovery & material design (sampling,
generative modeling), single-cell genomics (optimal transport), ...
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Thanks!
Questions?

25



Dissipation of Hamiltonian
Monte Carlo Sampler



Motivation

Radford Neal (2011) on Hamiltonian Monte Carlo:

“One practical impediment to the use of Hamiltonian Monte Carlo is the need to
select suitable values for the leapfrog stepsize h, and the number of leapfrog
steps K ... Tuning HMC will usually require preliminary runs with trial values for h
and K ... Unfortunately, preliminary runs can be misleading ...”



Anatomy of HMC dynamics

Classical HMC alternates between:

(1) Follow deterministic Newtonian mechanics Ẍt = −∇f(Xt)

{
dXt = Vt dt
dVt = −∇f(Xt)dt

for time T: define flow map φT(X0, V0) = (XT, VT)
(2) Redraw the velocity VT ← Z ∼ N (0, I)

! Piece-wise deterministic Markov process



Anatomy of HMC dynamics

Classical HMC alternates between:

(1) Follow deterministic Newtonian mechanics Ẍt = −∇f(Xt)

{
dXt = Vt dt
dVt = −∇f(Xt)dt

for time T: define flow map φT(X0, V0) = (XT, VT)
(2) Redraw the velocity VT ← Z ∼ N (0, I)

! Piece-wise deterministic Markov process
Along dynamics (1), conservation of HamiltonianH(X, V) = f(X) + 1

2∥V∥22 as

d
dt (f(Xt) +

1
2∥Vt∥

2) = ∇f(Xt)⊤Vt + V⊤t (−∇f(Xt)) = 0

Stochasticity in (2) is needed for the dynamics to be a valid sampler, i.e.,

Law(Xt, Vt)→ π(X)⊗N (0, I) ∝ e−H(X,V)



HMC and Ergodicity

Ergodic: unique invariant measure (initial ρ0 is eventually forgotten), or equivalently ∀f

lim
T→∞

1
T

∫ T

0
f(xt)dt =

∫

Rd
f(x)π(x)dx

Imagine ensemble of particles (Ex: harmonic oscillator with potential f(x) = 1
2∥x∥2):

Implies ρT(X) ! π(X) for all ρ0 if the dynamics simply follow Ẍt = −∇f(Xt)



Parameter Tuning and Connection to Optimization

Two extremes:
- T too short: short deterministic dynamics! random-walk-like diffusive behavior

- T too long: periodic! backtrack on the progress made

Assuming quadratic potential with

µ · I ≼ ∇2f ≼ L · I, κ := L/µ

[Chen-Vempala ’22] show for T ≍ 1/
√
L , mixing time in W2 is

≍ κ log(1/ϵ) × 1√
L
≍
√
L
µ

log(1/ϵ)

and this is tight.



Parameter Tuning and Connection to Optimization

What if we do partial refreshment (as inspired by accelerated gradient descent)?

1. Follow deterministic flow φT for time T
2. Redraw the velocity VT ← ηVT +

√
1− η2Z for some η > 0

What if we randomize the integration time?

1. Follow deterministic flow φT for time T ∼ Pois(λ−1)← jump process
2. Redraw the velocity VT ← Z



Dissipation of the Dynamics

Key Observation

For quadratic potential, both give improved performance by √κ factor, i.e.,
√
L
µ

log(1/ϵ)→ 1
√
µ
log(1/ϵ)

The crucial quantity is
λ −1(1− η 2) ≈ √µ

with either η = 0,λ−1 =
√
µ or 1 − η2 =

√
µ/
√
L,λ−1 =

√
L, which compared to

classical scaling
λ−1(1− η2) ≈

√
L

when η = 0,λ−1 =
√
L can be much smaller, i.e., more inertia.

trajectory length

momentum

Argument based on (synchronous) coupling of two chains, challenge is using the right
Lyapunov function over extended state-space R2d for contraction.



Discretization of Hamiltonian Dynamics

One gradient call, leapfrog (i.e., Verlet) for discretizing Ẋt = Vt, V̇t = −∇f(Xt) :

xk+1/2 = xk + h/2 · vk
vk+1 = vk − h ·∇f(xk+1/2)
xk+1 = xk+1/2 + h/2 · vk+1

Symplectic integrator:

• Simulate long trajectory w/o incur much err (flow preserve phase space volume)

• For quadratic there’s a “shadow Hamiltonian” the discrete dynamics preserve!
invariant measure is another quadratic with shifted mean! bias O(L

√
dh2) inW2



Putting everything together

Dissipation-reduced HMC

K-times, deterministic

⎧
⎪⎪⎨

⎪⎪⎩

xk+1/2 = xk + h/2 · vk
vk+1 = vk − h ·∇f(xk+1/2)
xk+1 = xk+1/2 + h/2 · vk+1

vk+1 = η · vk+1 +
√
1− η2 · Z

Stepsize h ≍
√
ϵ√

Ld1/4 determined by bias of deterministic part, K = T/h steps of
leapfrog, together w/ momentum η satisfies 1/Kh · (1− η2) ≈ √µ ! Total # gradient call:

from
√
L

µ · h =
κd1/4√

ϵ
to 1

√
µ · h =

√
κd1/4√
ϵ

Improve on 1st-order over-damped Langevin: ( 1
µ·h = κd

ϵ2 inW2)

dXt = −∇f(Xt)dt+
√
2dWt with Law(Xt)→ π.
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