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Research Overview and Roadmap

Signal Processing / Optimization (Numerical Statistical Computation /
Structured inference Algorithm & Complexity) MCMC Sampling

Today:
(1) information-theoretic complexity in optimization

(2) co-dim optimization in general metric space ~ sampling and diffusion!



WOptimization



Optimization and Data Science

Optimization comes in many different flavors:

- online

Decision making under uncertainty
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Optimization and Data Science

Optimization comes in many different flavors:

- online
- distributed

Federated Learning
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Optimization and Data Science

Optimization comes in many different flavors:

- online

- distributed
. non-convex Neural Network Training




Optimization and Data Science

Optimization comes in many different flavors:

- online
- distilbuieg Game Dynamics and Equilibrium

* non-convex ) 5 3 ) .
, min max f(x,y) = axy+x-—y°, a = interaction
- min-max Xy




Optimization and Data Science

Optimization comes in many different flavors:

- online

- distributed
- non-convex
- min-max

- combinatorial
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Optimization and Data Science

Optimization comes in many different flavors:

- online

- distributed

- non-convex

© min-max

- combinatorial
- robust

- stochastic

- non-Euclidean
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gGoal:

Study # rounds of interaction (R) with an O, such that for functions fin certain
55

fixe) = <e

for the output x.

Two stops:

- Function with smooth higher-order derivatives (F) and higher-order oracle (O)
[BJLLS COLT "19]

- Non-smooth function (F) with parallel gradient oracle (O) [BJLLS NeurIPS "19]



Black-box Oracle Complexity: Smooth Function

Setting

- Function class F: Lipschitz gradient, i.e.,

VI(x) = VA < Lllx =yl
- Gradient Oracle O: access to {f(-), Vf(:)} at any query point x
- Ex: linear system f(x) = ||Ax — b||

’ = FoO . B 4 FoO ‘ ——P FoO
{fGro), Vf(xo)}J (e, Vf(xl)}JA

Figure 1: Classical First-Order Oracle Model

Curved arrow is where algorithm design comes in (Ex: X; + Xo — h - Vf(xo))



Gradient Descent and Accelerated Gradient Descent

e T N

Accelerated Gradient Descent
Xer1 = Yo — 1 V(Vk)
Vi =X + 53 (Xp = Xe—1)

Gradient Descent

X1 = X — 1 V(Xe)
one gradient call per iteration

Vilxi), o] Xk+1
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ODE: X; = —Vf(X;) ODE: X; +3/t- X¢ + VA(X)) = 0

Rate O(1/k), dimension-free | Rate O(1/k?), not a descent method

Formalism of oracle model led to the discovery of AGD and it is the best one can do.
[Nemirovski & Yudin '83] 5



Generalization: Higher Order Oracle Model

Setting

- Function class F: p-times differentiable & p-th order smooth

IVPf(x) = VP = max [VPA)IV” = VPRY)VP| < Lplix =y

livii=1

- p-th Order Oracle O: access to {f(x), Vf(x),--- , VPf(x)}

+ Example: ¢y-regression 7||Ax — bllp

. b 4 Hoo . b 4 HoOO ‘ —p HoO

.....

Figure 2: Higher order oracle



Generalization: Higher Order Oracle Model

Setting
- Function class F: p-times differentiable & p-th order smooth
- p-th Order Oracle O: access to {f(x), Vf(x), -+, VPf(X)}
- Example: ¢p-regression 7||Ax — bl|p

Under mild assumption on the algorithm, one has

min f(x)—f > Q (kLP) .

0<t<k

2

There is a family of algorithm that achieve convergence rate O(x).



Generalization: Higher Order Oracle Model

Setting
- Function class F: p-times differentiable & p-th order smooth
- p-th Order Oracle O: access to {f(x), Vf(x), -+, VPf(X)}
- Example: ¢,-regression 1||Ax — bl[p

Under mild assumption on the algorithm, one has

min f(x) — f* ZQ(/Fﬁ) .

0<t<k

There is a family of algorithm that achieve convergence rate O(=).

Coincide when p =1.

For p = 2 : Accelerated Cubic-Regularized Newton [Nesterov & Polyak '08].



Generalization: Higher Order Oracle Model

Setting
- Function class F: p-times differentiable & p-th order smooth
- p-th Order Oracle O: access to {f(x), Vf(x),---, VPf(x)}
- Example: ¢p-regression 7||Ax — bl|p

Under mild assumption on the algorithm, one has

min f(x) - f > Q (Lp) .

0<t<k R

There is a family of algorithm that achieve convergence rate O().

Coincide when p =1.

For p = 2 : Accelerated Cubic-Regularized Newton [Nesterov & Polyak '08].

e Gap between upper & lower bound? Better algorithm?



The Iteration-Complexity Optimal Algorithm

Convergence Guarantee [BJLLS, COLT19]

3p+1

There is an algorithm with error decrease as O(k="7).

Still leverage interpolation of past iterates, but each iteration of the algorithm requires
solving a tensor minimization problem:

_ : . LD o p+1
Vi = argmin {f5 (v + 3y — 2P}

N

When p = 1,2, 3 efficiently solvable.



The Iteration-Complexity Optimal Algorithm

Convergence Guarantee [BJLLS, COLT19]

3p+1

There is an algorithm with error decrease as O(k~"7).

Still leverage interpolation of past iterates, but each iteration of the algorithm requires
solving a tensor minimization problem:

_ g . LD p+1
Vi = argmin {(v50) + 2y = xllP*T |

N

- When p = 1,2, 3 efficiently solvable.

These are quite powerful oracles ...

Broadly useful beyond scientific curiosity?



Black-box Oracle Complexity: Non-Smooth Function

Setting
- Function class F: Lipschitz, i.e., |[f(x) — f(v)] < Lo - ||x — V||
- First Order Oracle O: return {f(x), of(x)}
- Example: ¢-penalty | - |1, hinge loss

‘—-> FOO ‘——» FOO ‘—‘“’ Foo
{f(xo), of x)} j {f@), of(xp)} j

Figure 2: Classical Sequential Setup (non-smooth f)



Black-box Oracle Complexity: Non-Smooth Function

@

(Sub)gradient Descent

At iteration R,

Xe1 = X — h - Vf(Xg)

output: Xk = 3 >_ X, rate O(1/vK)

Cutting Plane Methods
High-dimensional binary search

~» separation oracle implementable
by Vf thanks to convexity

@) (d log (1)) queries suffice
€

1 .
@) <2> queries suffice
€




Black-box Oracle Complexity: Non-Smooth Function

Sequential Setup (K = 1):

sub-gradient descent is optimal
6(1/€?)

smaller d — - larger d

l 1/€?

cutting plane is optimal
6(d log(1/¢€))

Figure 2: Upper & Lower Bound for non-smooth f



Generalization: Parallel Oracle

Allowed to submit K gradient queries in parallel [Nemirovski '94].

. == —> {(f(), o)}
. — —> {f(3), o)}
Parallel Parallel
. FOO FoOO
. - - {fG5), of ) —¥

Figure 3: Schematic for Parallel Setup

Call Depth the # queries to parallel oracle O



Generalization: Parallel Oracle

Allowed to submit K gradient queries in parallel [Nemirovski '94].

. — — (), D) — ‘ —
. — —b (6D, of D) . —

Parallel
FOO

Parallel
FOO

‘ —> — {fGE), of ) —¥ ‘ —>

Figure 3: Schematic for Parallel Setup

fG)

Call Depth the # queries to parallel oracle O /

? For K = poly(d), best possible depth?

Power of non-adaptive information in convex optimization?



Our Result

Upper & Lower Bound on Parallel Complexity [BJLLS, NeurIPS "19]

cutting plane is the best-known
0O(d log(1/€))

-

sub-gradient descent is un-improvable

0(1/e?)

!

smaller d 1

!

1
1/¢*

there is a parallel algorithm with

5(‘11/3 /62/3)

N N
P largerd




Our Result

Upper & Lower Bound on Parallel Complexity [BJLLS, NeurIPS '19]

cutting plane is the best-known sub-gradient descent is un-improvable
O(d log(1/€)) O(1/€?)
smaller d } - —P largerd

1/e l 1/¢*

there is a parallel algorithm with
B(d"Be23)

h'e Randomized smoothing of non-smooth f as g = f*,, parallel computation of
gradient by sampling x; ~ N (y,r-1) and @g( ) = Z, 1 Vf(xi) ~ leverage highly smooth

acceleration result on the smoothed g(+)



Our Result

Upper & Lower Bound on Parallel Complexity [BJLLS, NeurIPS "19]

cutting plane is the best-known sub-gradient descent is un-improvable
0O(d log(1/€)) 6(1/e?)
smaller d =— 1 — largerd
1/e l 1/¢*

thereisa p_arallel algorithm with
@( d 173 / €2/3)

Reality check: binary classification b; € {1}, a; € R®? e ~ 1072, SVM loss with 5000
samples miny f(x) = S000°[1 — b; - a X+

- (Sub)gradient descent: ~ 650 iterations

- Parallel Stochastic method: ~ 250 iterations



(%Statistical Computation and
Sampling




Sampling as an important algorithmic primitive

P(B|A) x P(A)
TP(BIA) P(AYA

Data Likelihood

(a) Bayesian statistics / inverse problem (b) Volume computation / counting

i Fixed forward diffusion process
%

Y

015 o5 Generative reverse denoising process
o5

(c) Computational physics and chemistry (d) Diffusion Generative Modeling

i



Goal:

Draw samples from

7 e f target density known up to normalizing constant

Design a process to gradually transform simple v — complicated .

Two stops

- Optimization in P,(RY) [J NeurlPS '21]: Mirror Langevin as geometry-aware MCMC
sampling algorithm

- Borrow ideas from generative modeling [JN '24]: optimal stochastic control / optimal
transport to steer a trajectory from v to « using machine learning



Optimization in P,(R%) and JKO Scheme

Deterministic Optimization in the space of probability measures
R, [ - 112) = (P2RY), W)

Conceptually,

Pri1 = argmin / p(X) log —— p(x) dx —&—— x Wi (p, pr)
P ( ) 2h N—_——

“Prox step” geometry
KL objective

take h small, iterates (pr)r trace out a curve of measures (pt); in P,(RY) converging to .

\ / KL(p||m)
Wz(ﬂkvM
1)

~—>
Pr Prs1




Optimization in P,(R%) and JKO Scheme

Deterministic Optimization in the space of probability measures
(R, - [l2) = (Pa(RY), W)
Conceptually,

P :argmpin/ p(x) log E;dX+MXW2(PaPk)

“Prox step” v geometry

KL objective

take h small, iterates (p)r trace out a curve of measures (p¢); in P,(RY) converging to .
[JKO 98] Coincide with stochastic SDE dynamics p; = Law(X;):

dXe = —Vf(X,) dt + V2 dW;
Have 7 o e~/ as long-time equilibrium and easy to discretize:

Xkt1 = Xe — h - Vf(Xg) + \/277‘Zk+1
.

Langevin MCMC
Converges ton, # 7 butm, - Tash — 0.



Optimization in P,(R%) and JKO Scheme

[JKO '98] Density X; ~ p; along Langevin SDE dynamics
dXe = —Vf(X;) dt + V2 dW;

follows gradient flow of minimizing KL functional with W, metric in P,(RY)

[ “pr = —Vi,KL(ptll )" ]




Optimization in P,(R%) and JKO Scheme

[JKO '98] Density X; ~ p; along Langevin SDE dynamics
dX; = —Vf(X;) dt + V2 dW,

follows gradient flow of minimizing KL functional with W, metric in Pz(Rd)

[ “pr =~V KL(pllm)" ]

¢ \We know one can go from
R[] 112) = (X, 9)

via mirror descent in optimization.

Is there a mirror flow analogue of Langevin?

(P2(RY), Ws) — (P2(X), Whg)
Treplace ground cost:

Convergence and stable discretization? || - |2 — geodesic distance under g




Mirror Flow and Mirror Descent

Mirror flow (in dual space) for bijective mapping Vo : X — RY, V2¢ > 0:
dYe = =Vf(X)dt, Yi=Ve(X) (1)
Same as (in primal space) Riemannian gradient flow over (X, V2¢):

dXe = — (V26(X)) ' Vf(X,) dt (2)
Tgrad f under metric V2¢

ﬁ?Precondition for local geometry through choice of mirror map ¢

0-@Q

14



Mirror Flow and Mirror Descent

Mirror flow (in dual space) for bijective mapping Vo: X — RY V2¢ > 0:
dYe = =Vf(X)dt, Yi=Ve(Xt) (1)
Same as (in primal space) Riemannian gradient flow over (X, V2¢):

dXe = — (V2o(X)) ™ 'Vf(Xe) dt )
Tgrad f under metric V2¢
ﬁ?Precondition for local geometry through choice of mirror map ¢

Mirror descent discretizes (1):

Xp1 = Vo' (Vo(Xe) — h - V(X)) (3)
Can invert V¢* numerically, i.e.,, convex optimization.

Ex: ¢(x) = 3|Ix[12 GD; ¢(x) = ;i log(x;) multiplicative weight. If ¢ = f Newton.
At E.g., min,crs f(X) : (3) allow regularity w.rt norms beyond || - ||, without V2

14



Mirror Descent: Application to Constrained Setup

Optimize mingex f(x): turn into Riemannian manifold by endowing X with metric V¢
where ||[Vo(X)|| — oo as x — 0X.

B = - Y log(h;—a'x)

cEASY

Figure 5: Log-barrier metric supported on a polytope



Mirror Descent: Application to Constrained Setup

Optimize mingex f(x): turn into Riemannian manifold by endowing X with metric V¢
where ||[Vo(x)|| — oo as x — 0X.

$() == Y log(b; - a7 %)

cEASD

Figure 5: Log-barrier metric supported on a polytope

Primal X € X constrained

Xe = —(V2p(X))"Vf(X;) « Riemannian GF
Xps1 = Xk — h (V2 0(Xr)) " 'Vf(Xx) as x, — 0X

—0

[-] Can go out if h # 0, need V2¢(") E



Mirror Descent: Application to Constrained Setup

Optimize mingex f(x): turn into Riemannian manifold by endowing X with metric V¢
where ||[Vo(x)|| — oo as x — 0X.

$() == Y log(b; - a7 %)

cEASD

Figure 5: Log-barrier metric supported on a polytope

Primal X € X constrained Dual Y € RY un-constrained

Yi = V(X
\ 2 —1 —’ . .
X = —(V (X)) ™ Vf(X) Vé: X +RY Yy =—Vf(X;) « Mirror Flow
Xps1 =X — h (V20(Xk)) ™ Vf(Xe) as xp — OX

Vi1 = Yk — hVf(Xk), X1 = VO™ (Vit1)

—0
[+] Never leave X

_ i 2 (.
[-] Can go out if h # 0, need V2¢(-) [+] No need to evaluate V2¢(-) s



Mirror Langevin: Continuous Time

Sample 7 < e~ supported on X C RY.

[ Going from (R%, || - [l2) = (X,g) to (Pa(RY), Wy) = (Po(X), Wag) ]

Mirror Langevin SDE in dual space:

dYy = —V(Ve* (Yr) dt + 2[V2* (Vo) T dWs, Ve = V(X

Equivalent to Riemannian Langevin dynamics in primal space:

dXe = (V- (V20(X) ") — V20 (X) T 'VF(Xp)) dt 4 /2V2¢(X;) 1 dW,



Mirror Langevin: Continuous Time

Sample 7 «x e~ supported on X C R¢.

Going from (R%, || - [l2) — (X,g) to (P2(RY), W) — (Po(X), Wag)

Mirror Langevin SDE in dual space:

dYy = —VA(Ve* (Yy) dt + /2[V2e* (V)T dWs, Ve = V(Xe)

Equivalent to Riemannian Langevin dynamics in primal space:
dX: = (V- (V20(X)™") — V20 (X)) T'Vf(X,)) dt 4+ /2V26(X:) 1 dW;

Recall V2p(X)~™" — 0as X — 90X so X; € X always.



Mirror Langevin: Continuous Time

Sample 7 x e~/ supported on X C RY.

Going from (R%, || - [l2) = (X,g) to (Pa(RY), W) = (Po(X), Wag)

Mirror Langevin SDE in dual space:

dYr = —VA(Ve' (V1)) dt + /2[V2*(Ye)] 1 dW;,  Y: = Ve (X)

Equivalent to Riemannian Langevin dynamics in primal space:
dXe = (V- (V20(X))™") — V20 (X)) T'Vf(X0)) dt 4 /2V24(X:) 1 dW;

Recall V2p(X)~' — 0 as X — 90X so X; € X always.
GF interpretation of D under W; g24 ~ “Wasserstein mirror flow” [Chewi et al 20]

same objective T more general metric




Mirror Langevin: Continuous Time

Sample 7 x e~ supported on X C RY.

Going from (R%, || - [l2) = (X,g) to (Pa(RY), W) — (Po(X), Wag)

Mirror Langevin SDE in dual space:
dYt = 7V]C(V()‘: (Yv)) dt + 2[V2¢5*(Yt)]71 th, Yt = Vq&(Xt)
Equivalent to Riemannian Langevin dynamics in primal space:

dXe = (V - (V20(X)™") — V20 (X) T 'VF(Xp)) dt 4+ +/2V2¢(X) " dW,

Mapping the diffusion process to dual space: a tractable SDE-dynamics that
(1) enjoy better geometric property for mixing;
(2) perform constrained sampling on compact, convex set X




Mirror Langevin: Discretization

SDE in dual space:

dY; = —Vf(X:) dt + 2[V26(X)] dWs, Vi = V(X:)

X1 = Vo (V0) = h- Vf0) + V2R - V6002 - Zer )

fAsymptotic irreducible bias w.rt diminishing step size h — 0 generally.



Bias-free Discretization Schemes [J NeurlIPS '21]

deterministic, need to query Vf stochastic, only involve ¢

Ve = = VAX)dt + V2AVEFDI dWs , Ve = Vo(Xe)

Splitting Schemes (discretize objective but not geometry)

Forward Discretization:

y_V(b(Xk)_h'Vf( 0
olve dy; = \/2[V2¢*(y;)]"dW; from initial yo =¥ ()

Xpp1 = Vo*(Vn)

Brownian motion (&) can be solved approximately. Guarantee x, € X’ Vk.



Bias-free Discretization Schemes [J NeurlIPS '21]

deterministic, need to query Vf stochastic, only involve ¢

] !
dYe = — VAX)dt + V2[VZe (Yol dWe, Y= V(X

Splitting Schemes (discretize objective but not geometry)

Discretization:

Y =Vo(xe) = h-Vf(x)
solve dy; = /2[V2¢*(y:)]~'dW; from initial yo =V ()

Xey1 = Vo™ (Vn)

-
Can also consider discretization: Vf(x,) = Vf(xx ).

Both bias-free as h — 0.



Numerical Experiments

1. Ill-conditioned Gaussian (d = 50, k = 100)

Figure 6: Error averaged over 100 parallel chains (mixing time < vs. ':—f unadjusted Langevin)

2. Uniform sampling from 2D constrained ill-conditioned box [-0.01,0.01] x [—1,1]
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Diffusion Generative Modeling and Time Reversal SDE

MCMC struggles with multi-modality in the target distribution. Alternatives?

Figure 7: Probability distribution corresponding to image of scientists

20



Diffusion Generative Modeling and Time Reversal SDE

Setup

Given many samples from a complex distribution =, generate more samples from it.

1

v
- .

Generate

20



Diffusion Generative Modeling and Time Reversal SDE

With two path measures represented as (r is target, v simple)
—
dXt = UUt(Xt) dt + Jth, Xo~v = (Xt)t ~ ﬁy,gu
Xt+h ~ Xt + hO’U[(Xt) alx \/EO’Zt, Xo~v
<_
dXe = oVi(Xe) dt + oW, Xr ~ 7 = (Xe)e ~ B

thh ~ XI + hO'Vt(Xt) + \/EO'Z[7 XT ~ T

. . . -
Interested in learning drifts u, v such that Dy ( P”’““Hﬁm‘”) =0or DKL(ﬁm"VHﬁ”v”“) = (0

pviou

simple v(X) m=m———= 7(x) target

Pr.ov

20



Diffusion Generative Modeling and Time Reversal SDE

With two path measures represented as (r is target, v simple)
—
dXt = UUt(Xt) dt + O'th, Xo~v = (Xt)t ~ ﬁu,au
<___
dXt = UV[(X{) dt + O'th, Xr~1m = (Xt)t ~ ?ﬂ’gv

: : : - —
Interested in learning drifts u, v such that D ( P”v”“\\(ﬁ”v”) =0or DKL(F“’VH pvot) = 0:

pviou

simple v(X) m——= m(X) target
Prov

Generative models: fix noising part Prov (e.g., OU), learn NN-parameterized denoiser u
. -
using data from m ~~ min, DKL(F“’VH P¥oY) [Song et al "21]

Figure 7: Generative Model: learning to denoise

20



Sampling by learning transition path

priou
simple v(X) m—= m(x) target

Pr.ov

fDon't have samples from =: reverse KL, still fix v

21



Sampling by learning transition path

ou

P
simple v(X) m——= m(X) target

Pr.ov

fDon’t have samples from = reverse KL, still fix v

- dBvou r
DKL( PV’UUHF‘”’U\/) — E?V,UU [|Og <d )] = ]EXNTP?VJU l/ (Xt) dt] = EKL(U)
0

0V

~ solution min, Ly (u) is unique, resulting u* can be used to transport v to = [VGD '23]

21



Sampling by learning transition path

Pv:ou

simple v(X) m———= m(x) target

Pr,ov

fDon’t have samples from =: reverse KL, still fix v

_>V,0'U
D (B B =B [wg<jp )

v,ou
P oV

T
_@ﬁmwémmwﬂe&w)

~ solution min, Ly (u) is unique, resulting u* can be used to transport v to = [VGD '23]

Noise <> Data

Figure 8: Interpolating Flow between v and «

— :
But P77 =7 only if T — oc. )



Pathspace perspective: Schrodinger Bridge

. : . =
Such forward/backward process is not unique, a better choice of P*“%" corresponds to

lue(Xe)l*dt

stochastic optimal controll 71
min E, / -
u 0 2

st. dX; = O’Ut(Xt) dt + O'dVVt, Xo~ v, Xt~

~» minimum control effort steering v to w. Dynamics reaches target in finite time.

pr(x) = m(x)

Pox) = v(x)

Figure 9: (Constrained) Optimization over path measure Pc([0, T], R)

22



Pathspace perspective: Schrodinger Bridge

. : . =
Such forward/backward process is not unique, a better choice of P*“%" corresponds to

stochastic optimal controll 71
min E, V ||ut(xt)||2dt]
u 0 2

st. dX; = O'Ut(Xt) dt + O'th, Xo~ v, Xt~

~» minimum control effort steering v to w. Dynamics reaches target in finite time.

prx) = n(x)

Figure 9: (Constrained) Optimization over path measure P¢([0, T], R)

¢ Losses that can be used to train for a control u that follows an optimal trajectory w/o
access to data from =? 2



Sampling as optimal control / transport of measure over path-space

N

Add regularizer to Dy, ~ This imposes terminal marginals, uniqueness, and fulfills a
reversible noising/denoising in an optimal way:

arg min Dy (27| 7V")+Reg(Vu) or Reg(VV)
u,vv

Regularizer on the forward/backward control Vu, Vv can be done in various ways using
different perspectives on the SB problem: PDE, FBSDE, Optimal Transport [JN "24].

PINN Feynman-Kac T Schrodinger system

23



Sampling as optimal control / transport of measure over path-space

@ Add regularizer to Dy, ~» This imposes terminal marginals, uniqueness, and fulfills a
reversible noising/denoising in an optimal way:

arg min D (B V4| P™oVY) 4 Reg(Vu) or Reg(V)
u,vv

Regularizer on the forward/backward control Vu, Vv can be done in various ways using
different perspectives on the SB problem: PDE, FBSDE, Optimal Transport [JN "24].

PINN Feynman-Kac TS(,?H’()(WHZ(]!’ system

~

Alternate between:

(1) simulate trajectory oV with current control Vu from v

(2) estimate loss £(Vu, Vv) above & update NN-parameterized controls Vu, Vv
~ if loss = 0, the controls found must be optimal
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Experiment: Gaussian Mixture Model

0.3
2
G 0.2
C
j9)
001
. 0.0
-10 -5 0 5 10 -10 -5 0 5 10
State

State
(a) No optimality enforced (Reg=0) [CLT '22] (b) PDE-based Loss [VN "23]

Density

-10 -5 0 5 10
State State
(c) SDE-based Loss (ours) (d) OT-based Loss (ours)

7:}This approach: reduce sampling to ERM with neural network.
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Conclusion

| am particularly excited about:

- Theoretically, the connection between optimization, sampling, physics-inspired
dynamical system (e.g., HMC, momentum), mean-field game goes much deeper

T interacting particle system
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Conclusion

I am particularly excited about:

- Theoretically, the connection between optimization, sampling, physics-inspired
dynamical system (e.g., HMC, momentum), mean-field game goes much deeper

- Computationally, bring powerful function fitting NN-architecture to solve more
traditional tasks in sampling, control, PDE etc, is changing many areas of science

Toporator learning & harmonic analysis
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Conclusion

| am particularly excited about:

- Theoretically, the connection between optimization, sampling, physics-inspired
dynamical system (e.g., HMC, momentum), mean-field game goes much deeper

- Computationally, bring powerful function fitting NN-architecture to solve more
traditional tasks in sampling, control, PDE etc, is changing many areas of science

- Applications in climate modeling (PDE), drug discovery & material design (sampling,
generative modeling), single-cell genomics (optimal transport), ...
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Thanks!
Questions?



(7’7Dissipation of Hamiltonian
Monte Carlo Sampler




Stan

Stan is a state-of-the-art platform for statistical modeling and high-performance statistical
computation. Thousands of users rely on Stan for statistical modeling, data analysis, and
prediction in the social, biological, and physical sciences, engineering, and business.

Radford Neal (2011) on Hamiltonian Monte Carlo:

“One practical impediment to the use of Hamiltonian Monte Carlo is the need to
select suitable values for the leapfrog stepsize h, and the number of leapfrog
steps K ... Tuning HMC will usually require preliminary runs with trial values for h
and K ... Unfortunately, preliminary runs can be misleading ..”



Anatomy of HMC dynamics

Classical HMC alternates between:

(1) Follow deterministic Newtonian mechanics X; = —Vf(X;)

dXt = Vt dt
dv; = —Vf(X,)dt

for time T: define flow map ¢r(Xo, Vo) = (X7, V)
(2) Redraw the velocity V7 < Z ~ N(0, 1)

~+ Piece-wise deterministic Markov process



Anatomy of HMC dynamics

Classical HMC alternates between:

(1) Follow deterministic Newtonian mechanics X; = —Vf(X;)

dX; = Vidt
dv; = —Vf(X,)dt

for time T: define flow map ¢r(Xo, Vo) = (X7, V)
(2) Redraw the velocity Vr < Z ~ N(0, 1)

~+ Piece-wise deterministic Markov process
Along dynamics (1), conservation of Hamiltonian H(X, V) = f(X) + 3||V|| as

%)+ 2IVAP) = VI Ve + V] (~90) = 0

Stochasticity in (2) is needed for the dynamics to be a valid sampler, i.e,,

Law(X¢, V) — 7(X) @ N(0,1) e—H(XY)



HMC and Ergodicity

Ergodic: unique invariant measure (initial pg is eventually forgotten), or equivalently Vf

Imagine ensemble of particles (Ex: harmonic oscillator with potential f(x) = 3 ||x||?):

. L 1
PENDULUMS. H(X, V) = potential energy f(X) + kinetic energy Ellvn%

1 . .
= E(||X||§ + IVII3) is conserved along the motion

A

7 « e~2%* (1D Gaussian PDF)

>

X

—If we initialize p, out of equlibrium (i.e., low-density region), with most particles at the tails, most will likely stay at the two ends
—If most are initialized around the center (i.e., p, near stationary ), one can show the distribution of particles will stay the same

fImplies pr(X) - m(X) for all py if the dynamics simply follow X; = —Vf(X;)



Parameter Tuning and Connection to Optimization

Two extremes:
- T too short: short deterministic dynamics ~» random-walk-like diffusive behavior

- T too long: periodic ~» backtrack on the progress made

Assuming quadratic potential with
pol V=L, ki=L/p
[Chen-Vempala '22] show for T=<1/+/L, mixing time in W is

= rlog(1/€) x LL = \f log(1/€)

and this is tight.




Parameter Tuning and Connection to Optimization

Gradient Flow ratex : - 3{5 {Gradlent Flow w/ Momentum {

dX, = — Vf(X,)d a%, = Vidi
Optimization == Vi&X)dt dv, =-VfX)—yV,dt
min f(x) X, - X* X, V) = (X*,0)
} ODE dissipates f(X) and-order ODE dissipates H(X, V) + VD(Z)'S VD(Z)

1 1
D2Z) = EHX—X*”% +5||V||%

What if we do partial refreshment (as inspired by accelerated gradient descent)?

1. Follow deterministic flow ¢r for time T
2. Redraw the velocity V7 < nVr + /1 —n2Z for some n > 0

What if we randomize the integration time?

1. Follow deterministic flow ¢r for time T ~ Pois(A~") « jump process
2. Redraw the velocity V7 + Z



Dissipation of the Dynamics

Key Observation

For quadratic potential, both give improved performance by +/k factor, i.e,

VL0

L 1
— log(1/e) = —— log(1/¢
- log(1/¢) {1/

trajectory length

The crucial quantity is ——
N ERV/
momentum B
with either ) = 0.0 " = Juor1— " = /u/V/L. A" = VI, which compared to

classical scaling

AT =)= VL

when 7 = 0. )" = /L can be much smaller, i.e, more inertia.

J

<>

Argument based on (synchronous) coupling of two chains, challenge is using the right
Lyapunov function over extended state-space R2? for contraction.



Discretization of Hamiltonian Dynamics

One gradient call, leapfrog (i.e, Verlet) for discretizing X; = Vi, Vi = —VA(Xp) :

Xpg1/2 = X +h/2 - vk
Vigr = Ve — h - Vf(Xpqa/2)

Xk = Xeg1/2 + /2 Veys

- Simulate long trajectory w/o incur much err (flow preserve phase space volume)

2 2 4
Exact Symplectic Non-Symplectic

Momentum
Momentum
Momentum

3
2
1
0
1
2
3
4

-2 -1 0 1 2 -2 -1 0 1 2 -4 -3 -2 -1 0 1 2 3 a4
Position Position Position

- For quadratic there's a “shadow Hamiltonian” the discrete dynamics preserve ~
invariant measure is another quadratic with shifted mean ~- bias O(Lv/dh?) in W,



Putting everything together

Dissipation-reduced HMC

Xey1j2 = Xe +h/2 - v
Vi1 = Vi — h - Vi(Xpg1,2)

Xkt = X2 + N/2 - Vig

K-times, deterministic

Vi1 =0 Vet + V1 =12 - Z

Stepsize h = —Ye

WD determined by bias of deterministic part, K = T/h steps of

leapfrog, together w/ momentum 7 satisfies 1/Kh - (1—n?) = /i ~ Total # gradient call
ﬂ Hd1/4

kd/*
from v

/-
\/F

1
= — 0O =

Improve on 1st-order over-damped Langevin: (ﬁ = ’:—9 inW,)

dX; = —Vf(X:) dt + V2dW; with Law(X;) — 7.
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